Anesthesia for Otorhinolaryngologic Surgery



Key Concepts






  • The anesthetic goals for laryngeal endoscopy include profound muscle paralysis to provide masseter muscle relaxation for introduction of the suspension laryngoscope and an immobile surgical field, adequate oxygenation and ventilation during surgical manipulation of the airway, and cardiovascular stability during periods of rapidly varying surgical stimulation.
  • During jet ventilation, it is crucial to monitor chest wall motion and to allow sufficient time for exhalation in order to avoid air trapping and barotrauma.
  • The greatest concern during laser airway surgery is an endotracheal tube fire. This risk can be minimized by using a technique of ventilation that does not involve a flammable tube or catheter (eg, intermittent apnea or jet ventilation through the laryngoscope side port), or by using a laser-resistant endotracheal tube and lowering the fraction of inspired oxygen (ideally, as close to 21% as possible, consistent with adequate tissue oxygenation, as monitored by pulse oximetry) and not using nitrous oxide.
  • Techniques to minimize intraoperative blood loss include the use of cocaine or an epinephrine-containing local anesthetic for vasoconstriction, maintaining a slightly head-up position, and providing a mild degree of controlled hypotension.
  • As always, if there is serious preoperative concern regarding potential airway problems, an intravenous induction may be avoided in favor of awake direct or fiberoptic laryngoscopy (cooperative patient) or an inhalational induction while maintaining spontaneous ventilation (uncooperative patient). In any case, the appropriate equipment and qualified personnel required for an emergency tracheostomy must be immediately available.
  • The surgeon may request the omission of neuromuscular blockers during neck dissection or parotidectomy to identify nerves (eg, spinal accessory, facial nerves) by direct stimulation and to preserve them.
  • Manipulation of the carotid sinus and stellate ganglion during radical neck dissection (the right side more than the left) has been associated with wide swings in blood pressure, bradycardia, dysrhythmias, sinus arrest, and prolonged QT intervals. Infiltration of the carotid sheath with local anesthetic will usually ameliorate these problems. Bilateral neck dissection may result in postoperative hypertension and loss of hypoxic drive because of denervation of the carotid sinuses and bodies.
  • Patients undergoing maxillofacial reconstruction or orthognathic surgical procedures often pose the greatest airway challenges to the anesthesiologist. If there are any anticipated signs of problems with mask ventilation or tracheal intubation, the airway should be secured prior to induction of general anesthesia.
  • If there is a chance of postoperative edema involving structures that could obstruct the airway (eg, tongue), the patient should be carefully observed and perhaps should be left intubated.
  • Nitrous oxide is either entirely avoided during tympanoplasty or discontinued prior to graft placement.






Anesthesia for Otorhinolaryngologic Surgery: Introduction



In few other circumstances are cooperation and communication between surgeon and anesthesiologist more important than during airway surgery. Establishing, maintaining, and protecting an airway in the face of abnormal anatomy and simultaneous surgical intervention are demanding tasks. An understanding of airway anatomy (see Chapter 19) and an appreciation of common otorhinolaryngologic and maxillofacial procedures are invaluable in handling these anesthetic challenges.






Endoscopy



Endoscopy includes laryngoscopy (diagnostic and operative), microlaryngoscopy (laryngoscopy aided by an operating microscope), esophagoscopy, and bronchoscopy (discussed in Chapter 25). Endoscopic procedures may be accompanied by laser surgery.



Preoperative Considerations



Patients presenting for endoscopic surgery are often being evaluated for voice disorders (often presenting as hoarseness), stridor, or hemoptysis. Possible diagnoses include foreign body aspiration, trauma to the aerodigestive tract, papillomas, tracheal stenosis, tumors, or vocal cord dysfunction. Thus, a preoperative medical history and physical examination, with particular attention to potential airway problems, must precede any decisions regarding the anesthetic plan. In some patients, flow-volume loops (Chapter 6) or radiographic, computed tomography, or magnetic resonance imaging studies may be available for review. Many patients will have undergone preoperative indirect laryngoscopy or fiberoptic nasopharyngoscopy, and the information gained from these procedures may be of critical importance.



Important initial questions that must be answered are whether the patient can be provided with positive-pressure ventilation with a face mask and rebreathing bag, and whether the patient can be intubated using conventional direct or video laryngoscopy. If the answer to either question is not “yes,” the patient’s airway should be secured prior to induction using an alternative technique (eg, use of a fiberoptic bronchoscope or a tracheostomy under local anesthesia; see Case Discussion, Chapter 19). However, even the initial securing of an airway with tracheostomy does not prevent intraoperative airway obstruction due to surgical manipulation and techniques.



Sedative premedication should be avoided in a patient with medically important upper airway obstruction. Glycopyrrolate (0.2-0.3 mg intramuscularly) 1 hr before surgery may prove helpful by minimizing secretions, thereby facilitating airway visualization.



Intraoperative Management



The anesthetic goals for laryngeal endoscopy include an immobile surgical field and adequate masseter muscle relaxation for introduction of the suspension laryngoscope (typically the result of profound muscle paralysis), adequate oxygenation and ventilation, and cardiovascular stability despite rapidly varying levels of surgical stimulation.



Muscle Relaxation


Intraoperative muscle relaxation can be achieved by intermittent boluses or infusion of intermediate-duration nondepolarizing neuromuscular blocking agents (NMBs) (eg, rocuronium, vecuronium, cisatracurium), or with a succinylcholine infusion. However, profound degrees of nondepolarizing block may prove difficult to reverse and may delay return of protective airway reflexes and extubation. Given that profound relaxation is often needed until the very end of the surgery, endoscopy remains one of the few remaining indications for succinylcholine infusions. Rapid recovery is important, as endoscopy is often an outpatient procedure.



Oxygenation & Ventilation


Several methods have successfully been used to provide oxygenation and ventilation during endoscopy, while simultaneously minimizing interference with the operative procedure. Most commonly, the patient is intubated with a small-diameter endotracheal tube through which conventional positive-pressure ventilation is administered. Standard tracheal tubes of smaller diameters, however, are designed for pediatric patients, and therefore are too short for the adult trachea and have a low-volume cuff that will exert high pressure against the tracheal mucosa. A 4.0-, 5.0-, or 6.0-mm specialized microlaryngeal tracheal tube (Mallinckrodt MLT®, Mallinckrodt Critical Care) is the same length as an adult tube, has a disproportionately large high-volume low-pressure cuff, and is stiffer and less prone to compression than is a conventional tracheal tube of the same diameter. The advantages of intubation in endoscopy include protection against aspiration and the ability to administer inhalational anesthetics and to continuously monitor end-tidal CO2.



In some cases (eg, those involving the posterior commissure or vocal cords), intubation with a tracheal tube may interfere with the surgeon’s visualization or performance of the procedure. A simple alternative is insufflation of high flows of oxygen through a small catheter placed in the trachea. Although oxygenation may be maintained in patients with good lung function, ventilation will be inadequate for longer procedures unless the patient is allowed to breathe spontaneously.



Another option is the intermittent apnea technique, in which ventilation with oxygen by face mask or endotracheal tube is alternated with periods of apnea, during which the surgical procedure is performed. The duration of apnea, usually 2-3 min, is determined by how well the patient maintains oxygen saturation, as measured by pulse oximetry. Risks of this technique include hypoventilation with hypercarbia, failure to reestablish the airway, and pulmonary aspiration.



Another attractive alternative approach involves connecting a manual jet ventilator to a side port of the laryngoscope. During inspiration (1-2 s), a high-pressure (30-50 psi) jet of oxygen is directed through the glottic opening and entrains a mixture of oxygen and room air into the lungs (Venturi effect). Expiration (4-6 s duration) is passive. It is crucial to monitor chest wall motion and to allow sufficient time for exhalation to avoid air trapping and barotrauma. This technique requires total intravenous anesthesia. A variation of this technique is high-frequency jet ventilation, which utilizes a small cannula or tube in the trachea, through which gas is injected 80-300 times per minute (see Chapter 57). Capnography will not provide an accurate estimate of end-tidal CO2 during jet ventilation due to constant and sizable dilution of alveolar gases.



Cardiovascular Stability


Blood pressure and heart rate often fluctuate strikingly during endoscopic procedures for two reasons. First, some of these patients are elderly and have a long history of heavy tobacco and alcohol use that predisposes them to cardiovascular diseases. In addition, the procedure is, in essence, a series of physiologically stressful laryngoscopies and interventions, separated by varying periods of minimal surgical stimulation. Attempting to maintain a constant level of anesthesia invariably results in alternating intervals of hypertension and hypotension. Providing a modest baseline level of anesthesia allows supplementation with short-acting anesthetics (eg, propofol, remifentanil) or sympathetic antagonists (eg, esmolol), as needed, during periods of increased stimulation. Alternatively, some anesthesia providers use regional nerve block of the glossopharyngeal nerve and superior laryngeal nerve to help minimize intraoperative swings in blood pressure (see Case Discussion, Chapter 19).



Laser Precautions



Laser light differs from ordinary light in three ways: it is monochromatic (possesses one wavelength), coherent (oscillates in the same phase), and collimated (exists as a narrow parallel beam). These characteristics offer the surgeon excellent precision and hemostasis with minimal postoperative edema or pain. Unfortunately, lasers introduce several major hazards into the operating room environment.



The uses and side effects of a laser vary with its wavelength, which is determined by the medium in which the laser beam is generated. For example, a CO2 laser produces a long wavelength (10,600 nm), whereas a yttrium-aluminum-garnet (YAG) laser produces a shorter wavelength (1064- or 1320-nm). As the wavelength increases, absorption by water increases, and tissue penetration decreases. Thus, the effects of the CO2 laser are much more localized and superficial than are those of the YAG laser.



General laser precautions include the evacuation of toxic fumes (laser plume) from tissue vaporization; these have the potential to transmit microbiological diseases. When significant laser plume is generated, fitted respiratory filter masks compliant with Occupation Safety and Health Administration standards should be worn by all operating room personnel. In addition, during laser procedures, all operating room personnel should wear laser eye protection, and the patient’s eyes should be taped shut.



The greatest risk of laser airway surgery (if an endotracheal tube is used) is an airway fire. This risk can be moderated by using a technique of ventilation that minimizes the fraction of inspired oxygen (FIO2) and can be eliminated if there is no combustible material (eg, no flammable tube or catheter) in the airway. If an endotracheal tube is used, it must be relatively resistant to laser ignition (Table 37-1). These tubes not only resist laser beam strikes, but they also possess double cuffs that should be inflated with saline instead of air in order to better absorb thermal energy and reduce the risk of ignition. If the proximal cuff is struck by the laser and the saline escapes, the distal cuff will continue to seal the airway. Alternatively, endotracheal tubes can be wrapped with a variety of metallic tapes; however, this is a suboptimal practice and should be avoided whenever use of a specialized, commercially available, flexible, stainless steel laser-resistant endotracheal tube is possible (Table 37-2).




Table 37-1 Advantages and Disadvantages of Various Tracheal Tubes for Laser Airway Surgery. 




Table 37-2 Disadvantages of Wrapping a Tracheal Tube with Metallic Tape. 



Although specialized, laser-resistant endotracheal tubes may be used, it must be emphasized that no endotracheal tube or currently available endotracheal tube protection device is reliably laser-proof. Therefore, whenever laser airway surgery is being performed with an endotracheal tube in place, the following precautions should be observed:




  • Inspired oxygen concentration should be as low as possible by utilizing air in the inspired gas mixture (many patients tolerate an FIO2 of 21%).
  • Nitrous oxide supports combustion and should be avoided.
  • The endotracheal tube cuffs should be filled with saline. Some practitioners add methylene blue to signal cuff rupture. A well-sealed cuffed tube will minimize oxygen concentration in the pharynx.
  • Laser intensity and duration should be limited as much as possible.
  • Saline-soaked pledgets (completely saturated) should be placed in the airway to limit risk of endotracheal tube ignition and damage to adjacent tissue.
  • A source of water (eg, 60-mL syringe) should be immediately available in case of fire.



These precautions limit, but do not eliminate, the risk of an airway fire; anesthesia providers must proactively address the hazard of fire whenever laser or electrocautery is utilized near the airway (Table 37-3).




Table 37-3 Airway Fire Protocol. 



If an airway fire should occur, all air/oxygen should immediately be turned off at the anesthesia gas machine, and burning combustible material (eg, an endotracheal tube) should be removed from the airway. The fire can be extinguished with saline, and the patient’s airway should be examined to be certain that all combustible fragments have been removed.

Only gold members can continue reading. Log In or Register to continue

Stay updated, free articles. Join our Telegram channel

Jun 12, 2016 | Posted by in ANESTHESIA | Comments Off on Anesthesia for Otorhinolaryngologic Surgery

Full access? Get Clinical Tree

Get Clinical Tree app for offline access