CHAPTER 63 THE DIAGNOSIS OF VASCULAR TRAUMA
The diagnosis of vascular trauma is usually not a problem, as most injuries manifest overt blood loss, shock, or loss of critical pulses. However, in certain instances, the lesion may not be recognized initially, only to manifest itself later by sudden secondary hemorrhage or the development of critical organ or extremity ischemia.
HARD AND SOFT SIGNS OF VASCULAR INJURY
On the basis of history and physical examination, manifestations of vascular injury can be classified into two general prognostic categories, hard signs and soft signs (Table 1).
Hard Signs | Soft Signs |
---|---|
Active arterial bleeding | Neurologic injury in proximity to vessel |
Pulselessness/evidence of ischemia | Small- to moderate-sized hematoma |
Expanding pulsatile hematoma | Unexplained hypotension |
Bruit or thrill | Large blood loss at scene |
Arterial pressure index <0.90 pulse deficit | Injury (due to penetrating mechanism, fracture, or dislocation) in proximity to major vessel |
From Anderson JT, Blaisdell FW: Diagnosis of vascular trauma. In Rich N, Mattox KL, Hirshberg A, editors: Vascular Trauma, 2nd ed. Philadelphia, Elsevier/Saunders, 2004.
Hard signs are strong predictors of the presence of an arterial injury and the need for urgent operative intervention. Obvious examples include bright red pulsatile bleeding or a rapidly expanding hematoma. Evidence of extremity ischemia (manifested by the six P’s—pulselessness, pallor, pain, paralysis, paresthesia, and poikilothermia) and a bruit or thrill are additional examples. For extremity trauma, we also consider an arterial pressure index (API), also known as the ankle-brachial index, of less than 0.90 to be a hard sign. The API is determined by dividing the systolic pressure of the injured limb by the systolic pressure of the noninjured limb. Johansen and colleagues1 demonstrated 95% sensitivity and 97% specificity for identification of occult arterial injury with an API of less than 0.90. An API of more than 0.90 had a 99% negative predictive value for the presence of an arterial injury. The API is readily determined at bedside, and should be considered an extension of the physical examination. An important caveat is that the API may be normal in nonconduit vessels such as the profunda femoris.
Soft signs are those suggestive of an arterial injury, although with a much decreased likelihood than hard signs (see Table 1). These consist of mild pulse deficits, soft bruits, nonexpanding hematomas, and fractures or wounds in close proximity to major vessels. The actual incidence of arterial injury with these findings varies. For instance, patients with injury in proximity to a major vessel as the only finding are found to have an identifiable injury in less than 10% of cases; further, many of these injuries do not require additional treatment beyond simple observation. Most of the controversy of vascular trauma evaluation revolves around the assessment of patients with soft signs.
ADDITIONAL ANCILLARY TESTS
Duplex ultrasonographic scanning combines two-dimensional imaging to assess anatomic detail and Doppler insonation to assess flow characteristics. Several investigators have demonstrated high sensitivity and specificity in the detection of vascular injury in various anatomic locations.2–5 Duplex ultrasonography is more sensitive to the presence of vascular injury than the arterial pressure index (API). Importantly, duplex ultrasonography can identify arterial injuries in nonconduit vessels such as the profunda femoris (the API will remain normal). However, duplex ultrasonography is limited, as it is technician dependent and in most centers is not readily available after hours.
Recently, there has been a groundswell of interest in the use of CT angiography as a diagnostic modality for vascular injury in multiple anatomic locations.6–11 Major advantages include almost universal availability and three-dimensional (3D) detail. Compared with formal angiography, an interventional radiologist does not need to be in attendance at the time of the examination. In general, the examination can be obtained more expeditiously than formal angiography, particularly after hours. Technological advancements in imaging resolution and software have been significant. Arterial anatomy can be reconstructed in 3D detail for easy evaluation. However, the modality is diagnostic only. A subsequent angiogram may be required for therapeutic embolization. Notably, the combined contrast load from both a CT angiogram and a subsequent angiogram can be significant. An additional technical limitation is that CT angiography is compromised by scatter from metallic fragments much more than formal angiography.12 CT angiography is of particular value when thoracic vascular injury is suspected, and it has proven to be a highly sensitive screening test.13 However, mediastinal hematoma alone, without evidence of arterial disruption, may still require arteriography to confirm large vessel injury.14
Arteriography has long been regarded the gold standard for assessment of arterial injury.15 It is well tolerated and has a low complication rate. Major complications such as iatrogenic pseudoaneurysm or AV fistulas are very uncommon in the young population typical of most trauma centers. A major advantage of arteriography is the availability of therapeutic options (such as embolization). Further, compared with CT angiography, formal arteriography is not prone to scatter from the presence of metallic fragments. Even in centers that rely on CT imaging as the predominant diagnostic study, formal arteriography still has a diagnostic role in confirming or further delineating the presence of equivocal CT findings. This latter point is particularly applicable in the assessment of carotid injuries where even minor injuries may be of importance. An occasional patient requires urgent operation before availability of formal arteriography or CT angiography. In these patients, an on-table, surgeon-performed arteriogram can be obtained in the operating room. For instance, a femoral artery can be cannulated with an arterial catheter, contrast injected, and images obtained either with plain films or fluoroscopy.16–19 O’Gorman and colleagues16,17 have demonstrated that the axillary artery can be visualized by injection of contrast into the brachial artery with distal outflow occlusion with a blood pressure cuff inflated to a level well beyond the systolic arterial blood pressure. A benefit of the recent popularity of endovascular techniques has been increased availability of formal arteriography in the operating room. In fact, some centers have the capability of embolization of pelvic or visceral vessels in the operating room, thereby precluding the need to transport an unstable patient to a radiology suite that may not have the resources of the operating room.